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Nanofluid is a new kind of heat transfer medium
containing nanoparticles which are uniformly and stable
distributed in a base fluid. Experiments on nanofluids have
demonstrated that the thermal conductivity increases with
decreasing grain size [1-4]. Keblinski et al [4] have
examined four possible mechanisms for the anomalous
enhancement observed in nanofluids: Brownian motion
of the nanoparticles [5-7], molecular-level layering of the
liquid at the liquid-nanoparticles interface [8], the effects
of nanoparticle clustering [9], and ballistic phonons
transport [4].

Recently, the increasing of the heat transfer in nanofluids
was related to the fractal effects [10, 11]. Moreover, Wang
et al. [12] reported that the modified fractal model agreed
well with the experimental data obtained for the SiO2/
ethanol nanofluid. In such conjecture, the fractal theories
(particularly the scale relativity theory (SRT) [13,14] is a
new approach to understand quantum mechanics, and
furthermore physical domains involving scale laws, such
as the nanosystems [15,16, 17]. It is based on a
generalization of Einstein’s principle of relativity to scale
transformations. Namely, one redefines space-time
resolutions as characterizing the state of scale of reference
systems, in the same way as velocity characterizes their
state of motion. Then one requires that the laws of physics
apply whatever the state of the reference system, of motion
(principle of motion-relativity) and of scale (principle of
SRT). The principle of SRT is mathematically achieved by
the principle of scale-covariance, requiring that the
equations of physics keep their simplest form under
transformations of resolution. For example, considering
that the motion of micro-particles take place on continuous
but non-differentiable curves, i.e. on fractals [13, 14], it was
demonstrated that, in the topological dimension [18] DT=2,
the geodesics of the fractal space-time are given by a
Schrödinger’s type equation.

In the present paper, using the SRT, we analyzed the
effects of nanoparticle clustering on the heat transfer in
nanofluids.
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Theoretical part
Mathematical model

A non-differentiable continuum is necessarily fractal and
the trajectories in such a space (or space-time) own (at
least) the following three properties:

i) the test particle can follow an infinity of potential
trajectories: this leads one to use a fluid-like description;

 ii) the geometry of each trajectory is fractal (of
dimension 3 – for other details on the fractal dimension
see [15, 16]. Each elementary displacement is then
described in terms of the sum, dX =dx +dζ  of a mean
classical displacement  dx =vdt and of a fractal fluctuation
dζ, whose behaviour satisfies the principle of SRT (in its
simplest Galilean version). It is such that  〈dζ〉  = 0  and
〈dζ3〉  =  (6D2 / c) dt where D defines the fractal/non-fractal
transition, i.e. the transition from the explicit scale
dependence to scale independence and c is the light speed
in vacuum. The existence of this fluctuation implies
introducing new third order terms in the differential
equation of motion;

iii) time reversibility is broken at the infinitesimal level:
this can be described in terms of a two-valuesness of the
velocity vector for which we use a complex representation,
V = (v+ + v - ) / 2 - i(v+ - v- ) / 2. We denoted by v+ the
“forward” speed and by  v-  the “backward” speed.

These three effects can be combined to construct a
complex time-derivative operator (Appendix A)

                                                                    (1)

Now, the first Newton’s principle in its covariant form,
δV / dt = 0, becomes

                                       (2)
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i.e. a Korteweg – de Vries (KdV) type equation in a fractal
space-time. This means that, both of the differential scale
and the fractal one, the complex acceleration field, δV /
dt,  depends on the local time dependence, ∂tV , on the
non-linearity (convective) term, V . !V, and on the
dispersive one, !3V. Moreover, the behaviour of a “non-
differentiable fluid” is viscoelastic or hysteretic type. The
theory regarding the viscoelastic structural behaviour
applied at macroscopic level was used to the creep [19]
and relaxation [20] modeling for some polymeric type
materials.

Such a result is in agreement with the opinion given in
[9, 15, 16]: the non-differentiable fluid can be described
by Kelvin-Voight model or Maxwell rheological model with
the aid of  complex quantities e.g. the complex speed field,
the complex acceleration field etc.

From (2) and by the operational relation V . !V= !(V2
/ 2) - V x (!xV) we obtain the equation:

               (3)

If the motions of the “non-differentiable fluid” are
irrotational, i.e.  Ω =!x V = 0 we can choose V of the
form:

                                                                              (4)

with φ a complex speed potential. Then, equation (3)
becomes:

                                                  (5)

and more, by substituting equation (4) in equation  (5) ,
we have

                                         (6)

This yields:

                                                     (7)

with F(t) a function of time only. We realize that (5) have
been reduced to a single scalar relation (7), i.e. a Bernouilli-
type equation.

If φ simultaneously becomes complex speed potential
and wave-function, i.e.φ =-2iDlnψ, with D  the Nottales’
coefficient [13,14], equation (7), up to an arbitrary phase
factor which may be set to zero by a suitable choice of the
phase of ψ  i.e.F(t) = 0, implies the non-linear Schrödinger
type equation:

               (8)

Results and discussion
Effects of nanoparticle clustering at differentiable scale

Let us consider the relation (4) in the form:

                                                                            (9)

According to our previous observations, v will
correspond to the classical speed given by the differential
part of  V, and u will correspond to the fractal speed given

by the non-differential part of V. By replacing (9) in  equation
(5) and separating the real part from the imaginary one,
we obtain the following system:

                                       (10a,b)

In the differentiable case, i.e. u = 0, the system (10a, b)
becomes:

                                                              (11)

Considering that the heat transfer process in nanofluids
is one-dimensional [8-12], equation (11) takes the standard
form of the KdV equation [18]:

                                                     (12)

Using the dimensionless parameters [11, 12],
 and the normalizing conditions

[11],  equation (12) becomes:

                                                                  (13)

Through the substitutions,  where
  are parameters characterizing the critical growth

speed field of the cluster (for other details see [11, 12]),
the equation (13), by double integration, becomes

                                           (14)

with g, h two integration constants. If F (w) has real roots,
they are of the form

    (15a-c)

with

and K(s), E(s) the complete elliptic integrals [21]. Then,
the solution of equation  (13) has the expression

               (17)

where cn is the Jacobi’s elliptic function of s modulus [21]
and ζo constant of integration. As a result, the clustering
morphogenesis process is achieved by one-dimensional
cnoidal oscillation modes of the speed field. This process
is characterized through the normalized wave

                                                 (18)

- see figure 2, and the normalized phase speed

                             (19)

- see figure  3. Then:

(16a-d)
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i) the parameter λ  from equation (18) corresponds
through λ ≡ R to the normalized radius of the cluster, and
u from equation (19) to the normalized growth speed of
the cluster. Moreover, by eliminating the parameter a from
relations (18) and (19), one obtains

    (20)

where the quantity A(s) is numerically evaluated.
For s = 0 - 0.7, A(s) ≈ const. (fig. 4 and  equation 20)

takes the form,
                                               (21)

ii) through the  D  coefficient, the parameter s becomes
a measure of the heat transfer in nanofluids. Thus, for an
increased of the heat transfer, i.e. s → 0, the normalized
growth speed (u) of the cluster is high and the normalized
radius (R) of the cluster is small (fig. 2 and 3). On the
contrary, for a decreased of the heat transfer in nanofluids,
i.e.  s → 1, u is small and R is high (fig. 2 and 3);

 iii) the one-dimensional cnoidal speed oscillation
modes contain as subsequences, for s = 0 the one-
dimensional speed harmonic waves, for  s → 0 the one-
dimensional speed waves packet and for  s → 1 the one
dimensional speed solitons packet.

These subsequences describe the clustering
morphogenesis process.

For s → 1, the solution (17), with the substitutions φ0
=e3 and k2=(e1 - e3) / 2, becomes the one-dimensional
speed soliton

            (22)

of amplitude 2k2, width k-1 and phase velocity u = 4k2 +φ3o
This subsequence describes the cluster as a quasi-
autonomous structure.

Effects of nanoparticle clustering at non-differentiable scale

In the non-differentiable case the equation (14), with
the substitutionsw = (u / 4)f2 and  iη=(u/4)1/2θ  and with
the restriction h = 0, becomes a Ginzburg-Landau type
equation [18]:

  (23)
It results:

 i) the η coordinate has dynamic significations and f
variable, probabilistic ones (for details see also [13, 14]).
The space-time becomes a fractal one (for details see [13,
14]) the fluid acquires fractal properties (fractal fluid by
short);

ii) according to [22] we can build a field theory with
spontaneous symmetry breaking . The fractal kink,

           (24)

spontaneously breaks the vacuum symmetry by tunneling
and generates coherence structures. This mechanism is
similar with the one of superconductivity [23];

iii) through an analogy with the Bohm’s potential [24],
the fractal potential takes a very simple expression which
is directly proportional to the states density of the fractal
fluid, i.e.

         (25)

When the states density, f2, becomes zero, the fractal
potential takes a finite value, Q = 2mD2. The fractal fluid is
normal and there are no coherent structures in it. When f2

becomes 1, the fractal potential turns to zero, the entire
quantity of energy of the fractal fluid is transferred toward
its coherent structures. Then the fractal fluid becomes
coherent through self-structuring. Therefore, one can
assume that the energy from the fractal fluid can be stocked
by transforming all the environment’s entities into
coherence structures and then ‘freezing’ them. The fractal
fluid act as an energy accumulator through the fractal

Fig. 1 The continuous curves which are not fractals but have points
where they are not differentiable

Fig. 2. The dependence of the normalized wave length λ with s

Fig. 4. The dependence ( )sAA =

Fig. 3. The dependence of the normalized phase speed u with s.
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potential;
 iv) substituting (24) in (25) the fractal potential becomes

the fractal soliton (a soliton in a fractal space-time)

Conclusions
The main conclusions of the present paper are the

following:
i) through the scale relativity theory in the topological

dimension DT = 3, in the differentiable case the clustering
morphogenesis process is achieved by one-dimensional
cnoidal oscillation modes of the speed field;

 ii) for different degrees of the heat transfer in nanofluids,
the one-dimensional cnoidal speed oscillation modes
contain the one-dimensional speed harmonic waves, the
one-dimensional speed waves packet, the one
dimensional speed solitons packet and the one
dimensional speed soliton. The first three subsequences
describe the dynamics of the cluster, while the last one
describes the cluster as a quasi-autonomous structure;

iii) a relation between the normalized radius and the
normalized growth speed of the cluster is obtained;

 iv) in the non-differentiable case we can build a field
theory with spontaneous symmetry breaking. The fractal
kink spontaneously breaks the vacuum symmetry by
tunneling and generates coherent structures. Moreover, the
fractal fluid acts as an energy accumulator through the
fractal potential (fractal soliton);

v) usually, the speed field is proportional to a square
root of a normalized temperature (for details see [9-11]).
Then, all the properties of the speed field are transferred
to the thermal one. In certain conditions of an external
load (e.g. for a certain value of thermal gradient) the soliton
breaks down (blows up) and releases energy.

As result, the thermal conductibility in nanofluides
unexpectedly increases.
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